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The conjecture that " n o i s e "  is always smallest in an equil ibrium system is 
made quantitative for a t ranspor t  problem by identifying " n o i s e "  with the 
noise temperature  0. In equil ibrium the external field F = 0, and the 
fluctuation-dissipation theorem gives 0 = T, the temperature.  In a s t rong 
field F the Bol tzmann equat ion in the constant  relaxation approximat ion  is 
used to calculate the drift u(F, T) the diffusion constant  D(F, T), and the 
noise temperature  O(F, T) for piecewise linear one-dimensional  band 
structures E(k). The validity of the noise inequality 0 _> T has been shown 
for  a large variety of  band parameters  and for  all fields and temperatures.  
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There is a physically very plausible conjecture about the noise of a non- 
equilibrium system which states that noise should become a minimum in an 
equilibrium system. In any (stationary) nonequilibrium state it should be 
larger than its equilibrium value. 

Here we want to make this conjecture more quantitative for a transport 
problem in a strong electric field F in one dimension. It will be shown that the 
noise temperature 0 is the quantity which has the property stated in the 
conjecture. It is defined according to Price (1) by 

O(F, T) = rrS(F, T)/lz(F, T) = D(F, T)/I~(F, r )  

where S(F, T) is the velocity fluctuation spectrum, D(F, T) is the diffusion 
constant, and/x(F, T) is the differential mobility in a field F in the static case 
~ o = 0 .  

In equilibrium the field F vanishes and the fluctuation-dissipation 
theorem (FDT) gives 0(0, T) = T, i.e., the noise temperature coincides with 
the temperature T. The conjecture therefore becomes in quantitative terms 

O(F, T) >_ T (1) 
as long as/x _> 0. 2 

It is expected to hold for all band structures E(k) and for all linear 
collision operators C, which gives rise to stable stationary solutions of the 
transport equation 

04 ~ f 
Wkkhk, = W~,khk, h~ = Ce-E~/T, v~ = OEk/~k (2) 

These equations have been used for transport studies inh igh  electric fields 
(see Conwell(2)). They implicate collision processes of the electrons with 
another system, e.g., phonons. If this system has very fast internal relaxation 
processes, it remains (practically) in equilibrium and acts like an energy 
reservoir with constant temperature T, e.g., the lattice temperature. The 
phonon equilibrium assumption has been very successfully applied in order 
to explain the drift curves in real substances (see, for example, Ref. 3). 

In this paper the relevant quantities are calculated explicitly in the 
constant relaxation-time model of the collision operator C~ = v(h - (~), 
where v = 1/r is the relaxation frequency. The band structure E(k) is assumed 
to be piecewise linear. It is uniquely defined by 

E(k) continuous, E ( - k )  = E(k), E(O) = 0 

v(k) =vn  for kn < k < kn+l ( n =  0,1 .... , N )  (3) 

where ko = 0 < k l  < k2 < "'" < kN < kN+l = o9 

2 In cases with tz < 0 the assumpt ion  of  a homogeneous  stat ionary system (q = 0, 
~o = 0) is no longer true and 0 loses its physical meaning,  but  is still defined 
mathematically.  
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and is given by the band parameter  set 

k -- 0, k l ,  k2 ..... kz~, v = v0, vl, v2,..., vN 

The drift velocity in the T-model (see Ref. 4) is 

u(F, T )  = ~ = v (k  + F t )  ~t 

and the diffusion constant (D = 7rS) is 

fo" D(F,  T )  = dt Av( t )Av(O)  = A - Bu 

where 

(4) 

(5) 

which decay into (N + I)(2N + 3) ranges of  analytical integrands according 
to the lines of discontinuity at k,  k '  = O, +_ k l ,  +_ k2, . . . ,  + kN. The evaluation 
is given in the appendix. 

It  is easy to calculate u and D in some special cases. If  the absolute 
minimum of E ( k )  occurs for k = +km (kin = 0, kl,..., kN), then the following 
F - +  0, T--> 0 limits hold: 

lira u(F, O) = �89 + O) - v(km - 0)] 
F ~ O  

lim D(F,  O) = +[v(km + O) + v(km - 0)] 2 
F'--)O 

lira u(0, T) = 0 (9) 
T ~ 0  

lira D(0, T) = -v(km + O)v(km - O) 
T-'*O 

t 

u = C dk  e -  BE(k) + ~k a dk '  e - r (7) 
J k  

L f; I = C dk  e - ~E(k) + ~kc~2 dk '  e -  ~k 'v(k ' )E(k ' )  (8) 

A = v(k + Ft  + Fs )v (k  + Fs) ht~, B = v(k + Ft  + Fs) ht~ 

f fo and (...)~ = dk(..-) h, (...)t = dt( . . . )ve -~t, and analogously for (...)s. 

In order to evaluate u, A, and B for the piecewise linear band structure 
(PLBS) it is convenient to express B and part  of A by u, C, and its derivatives 
with respect to F and T 

du T2 ( du u dC ) 
B = u + F~-~, A = I -  -F  d-T Cd-T (6) 

Then u and I are given by the double integrals (a = v/F, fi = l/T), 
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and  
tz(0, 7") ~ ( l / T )  l im D(0, T) 

T--*0 

These fo rmulas  hold ,  since for  small  T and  F all e lectrons are near  the energy 
m i n i m u m  E(km), and u and D are de te rmined  by the energy band  pa ramete r s  

near  + kin. F o r m u l a s  (9) can also be extended to a band  s t ructure  with more  
equal  or  near ly  equal  energy min ima  by weight ing the cont r ibu t ions  with the 
co r respond ing  Bol tzmann  factors  e x p[ -E (k m) / T] .  

In the l imit  o f  F ~ oo or  T ~ oo the fol lowing is t rue :  

T = co: u(F, oo) = O, D(F, oo) = VN 2 (10) 

F = m :  u(o% T) = vN, D(m,  T) = 0 

This result  is aga in  plausible ,  since for  high field or  t empera tu re  most  o f  the 
electrons have very high energy and  u and  D are de te rmined  by VN, the 
asympto t i c  velocity. I t  is r emarkab le  tha t  F = 0, T = 0 and F = ~ ,  T = m 

values of  u and  D depend  on the order  in which the l imits  are taken.  
The dr if t  curves u(F, T)  have been publ i shed  earl ier  (see Ref. 5) for  the 

band  pa rame te r s  

( O,k~ , kN]  .... 

Vo, Vl,..., VN] 

D K =  0 d 
V = 2  4 

4 

Fig. 1. The diffusion constant D(F, T) as a 
function of field F with temperature T as a 
parameter for v = 1 and the specified band 
structure k = 0, 1; v = 2, 1 [for u(F, T) see 
Figs. 3-7 in Ref. 5]. 
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Fig. 2. The magnitude of the relative noise 
temperature [O(F, T)I/T as a function of field 
Fwith temperature Tas a parameter for v = 1 
and the specified band structure k = 0, 1 ; v = 2, 
1 [for #(F, T) X 0 see Figs. 3-7 in 5]. 
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In Figs. 1-10 the diffusion constant  D(F, T) and the magnitude o f  the relative 
noise temperature I O(F, T) l/Tare given as functions o f  F w i t h  Tas  a parameter  
for  the same band parameters  as above. Putt ing v = 1 is no essential restric- 
tion, since v enters only in the combinat ions  Fly and Dr, which are the quan- 
tities actually plotted. The detailed structure o f  the curves depends very much 
on the parameters  chosen. In general, D and [O]/Thave maxima and minima 
for finite fields, and D - + 0  as F---> oe [see (10)], whereas IO[/T tends to a 
limit value for  F - ~  co (see the appendix). For  small fields the discontinuous 
behavior  o f  (9) becomes evident by compar ing the curves for small T with 
T = 0 result. 

It can easily be seen that  in our  cases the conjecture 0 >_ Tis  everywhere 
fulfilled, a The computer  p rogram written has been used for many  other 

3 A proof can be given for small fields in the z-model. 
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Fig. 3. D vs. F, as in Fig.  1, b u t  fo r  k = 0, 
1 ; v  = - 2 , 1 .  
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Fig. 4. ]O[/Tvs. F, as in Fig.  2, b u t  for  k = 0, 
1; v = - 2 ,  1. 
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Fig. 5. D vs. F, as in Fig. 1, bu t  for  k = 0, 1; 
v = 0.5, 1. 
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Fig. 6. ]OIITvs. F, as in Fig. 2, bu t  for  k = 0, 
1 ; v  = 0 . 5 , 1 .  
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Fig. 7. D vs. F, as in Fig.  1, bu t  for  k -- 0, 1; 
v = - 0 . 5 ,  1. 
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Fig. 8. IOl/Tvs. F, as in Fig.  2, b u t  fo r  k = 0, 
1; v = - -0 .5 ,  1. 
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Fig .  9. D vs.  F, a s  in  Fig .  1, b u t  fo r  k = 0, 
0.5,  1; v = 2, - 1 . 9 ,  1. 
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Fig .  10. [O]/Tvs. F, as  in  Fig .  2, b u t  for  k = 0, 
0.5,  1; v = 2, - 1 . 9 ,  1. 
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examples, and parameters have been changed in such a way as to make the 
O/T minima (>  1) smaller and eventually to get a case with O/T < 1 ; how- 
ever, this could never be accomplished. 

We do not  consider this as a p r o o f  o f  the conjecture in the relaxation 
model  o f  the collision operator,  but  we hope to have shown that  there is 
s trong evidence for  the validity o f  the conjecture. 

A P P E N D I X  

In order to evaluate (7) and (8) it is convenient to use a vector nota t ion ~ 

{k(0),..., k (2U + 2)} = { - o o ,  - k u ,  - k N -  1,..., - k l ,  0, k l ,  k2,..., kN, oo} 

{v(1),..., v(2N + 2)} = { -vN,  -v :~_ l  ..... - v 0 ,  Vo, vl,..., vN} 

E(n + 1) = E(n) + v(n + 1)[k(n + 1) - k(n)], E ( N  + 1) = 0 

1 d k  e - B ~  - d k  e - ~  = - 
-C = - ~ v ( n  + 1) - o o  n = 0  d k ( n )  n = 0  

2 N + 1  2 N + 1  

/ t =O  l=r~  

u,z = dk dk' (...) for  n > l 
V k ( n  ) It(l) 

f .k(~ + . f ~(~ + l) 
u~,~ = dk dk' (...) for  n = l 

k(n) k(n) 

and analogous definitions fo r / , /~z ,  I , , ,  

e(n) - e(n + 1_) a v(l + 1)(e -~k<z) - e -~k<z- 1)) 
u,, = C [3v(n + 1 ) - - -  

[e-BE(n) -- e-BE('~+I) e(n) -- e(n + 2 )  
u,~,~ = Cv(n + I ) [  ~ G  + 1) - e-~a~+l) fiv(n + 1) - -  

e(n) - e(n + 
I.~ = c ~ -K, ;  %- V) - - ~ ( l  + 1 ) [v (I  + 1 ) ( e  - ~ ( ~  - e -  c~k(/+ 1)) 

+ a[E(1)e -~(z) - E(I  + 1)e -~(~+1)} 

4 In an APL program vectors can be handled in a very efficient way. 
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e(n) - e(n + 1)v(n + 1)[aE(n + 1) + v(n + 1)]e -~k('~+l) 
I,~, = - C  f l v (n  + 1 ) -  c~ 

+ C  
e-BE(n) __ e-BE(n+1) 

fl "(aE(n) + v(n + 1)[1 - c~k(n)]} 

C c~ re_BE(,o[ 1 ak(n)] e-BE("+15[1 + ak(n + 1)]} + ~-7~ + - 

w h e r e  e ( n )  = e -  aE(n) + c~k(n). 

For  periodic band structures E ( k  + p)  = E(k )  the limit F - +  ~ gives 

T 2 ( / ~ -  E n) 

where (.~) = (l/p) f(p~ dk (...) is the average over the period. For  T--> 

[ O(oo, r) l / r &  1 

A similar result holds for the nonperiodic band structures (p = m), as, for 
example, for  the PLBS, but it depends again on the order o f  the limits 
T--> oo and F--> m. 
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